正是由于这些因素,这个混合正极体系的循环性实际上是受到充放电SOC窗口限制,在相同的SOC条件下,LMO中的锂离子利用率在混合体系可以更高,这实际上将导致LMO在混合材料中相对于纯组份LMO更快的容量衰减率。也就是说,在过充或者过放的情况下,这个混合正极体系的循环性可能比单独使用LMO衰减更快。从这个角度而言,LMO混合NCA/NMC在电池循环寿命上可能存在悖论。笔者认为,在这个混合体系里面,高工作电压和长存储和循环寿命很难同时具备,因为高电压组份要承受更快的容量衰减。事实上,在这个混合体系里面,电池寿命更多的是由低电压组份(NCA/NMC)贡献的。
尖晶石(LMO)混合一定比例的 NCA或者NMC,在电化学性能上并非最好。但是,不管是从材料角度和电芯工艺的实际要求而言,还是国内动力电池产业界目前的整体技术水平来看,笔者认为这个混合体系应该是目前我国动力电池最现实的正极材料解决方案。(凸显)但遗憾的是,我国在十年前跟随美国选择了磷酸铁锂动力电池技术路线,直到2012年年底A123破产以后,这个混合正极材料体系才逐渐在国内受到重视。
国际上,LMO混合 NCA/NMC正极体系已经在日韩主流电池厂得到了广泛的应用。比如,日产Leaf电动车采用的是89%LMO-11%NCA混合正极体系,动力电池由AESC汽公司提供,AESC是由日产和NEC合资成立的动力电池公司。美国GM的Volt电动车使用78%LMO-22%NMC混合材料作为正极,动力电池由韩国LG公司生产。此外,三菱i-MiEV和现代的索纳塔HEV也是采用的这种正极混合体系。除了LG和AESC之外,Samsung SDI、Panasonic、英耐时,Hitachi等都有量产基于LMO/NMC混合正极材料体系的动力电池。
3. 层状材料(NMC/LCO)/尖晶石(LMO)混合体系
层状材料混合尖晶石有两个不同的体系,一个体系是NMC混合少量LMO用于大型动力电池,这个体系目前是日韩在动力电池领域的研究和开发重点。 另外一个体系是LCO混合LMO用于B品手机电池。
在成功发展了LMO混合NMC/NCA体系的基础上,目前日韩大型动力电池的研究重点已经转移到了能量密度更高的NMC搭配混合少量NCA和LMO体系,混合比例一般在20-30%左右。这个体系的出发点主要是基于电动汽车对能量密度的迫切需求。另外,混合少量LMO对改善三元材料的安全性有所裨益。这个体系所面临的难题,也是涉及到SOC和循环性问题。目前这个混合体系已经有实际应用,比如BMW i8使用了80%NMC-10%NCA-10%LMO 混合正极体系。笔者认为,鉴于目前国内在三元电池生产技术方面跟日韩相比仍有较大差距,NMC搭配混合少量LMO体系现阶段可能并不是非常适合国内电芯厂家,但是这个技术发展趋势是很明显的。
LCO/LMO混合体系虽然被研究过,但国际上并没有厂家实际应用这个体系,主要是因为这个体系从电化学性能的角度而言并没有什么实际意义。这个混合正极材料体系仅仅只有在国内被实际应用在手机电池里面。出于降低成本的考量,以前国内很多手机电池厂家会在以钴酸锂中加入少量的锰酸锂。后来手机电池又有一部分被演变成所谓的B类C类电池,材料体系也由以钴酸锂为主逐渐变为锰酸锂为主加入少量钴酸锂,到最后的使用纯锰酸锂,采用这类材料生产的电池性能就可想而知了。
4. 层状材料(NMC)/橄榄石(LFP/LFMP)混合体系
橄榄石结构正极材料(LiFePO4, LiFeMnPO4, LiMnPO4 以及Li3V2(PO4)3)在过去数十年里得到了非常深入的研究。由于LFP的能量密度较低,将LFP与层状材料(LCO、NMC)进行混合是提高电池能量密度和倍率性能的一个途径。但由于LFP与LCO或者NMC的工作电压相差较大,这种混合方式并没有取得理想的效果。所以,LFP不适合与NMC混合应用于动力电池。
目前,国际上已有数家公司研究NMC混合少量LFMP(LiFe0.2-0.3Mn0.8-0.7PO4)应用于大型动力电池。这个混合材料的基本思路是利用NMC和LFMP工作电压比较接近的特点,来改善NMC的安全性。NMC动力电池能量密度较高,倍率和温度性能都不错,但电芯的安全性一直是个很大的技术挑战,而导致纯三元动力电池比较难以通过针刺和过充等测试条件。
此外,纯三元动力电池产气问题比较严重,而且高温循环和存储也是存在较大困难。 NMC混合少量LFMP以后,可以在一定程度上抑制三元材料在热失控情况下的连锁反应,电芯产气问题也得到一定程度降低,从而改善了电芯的安全性。利用LFMP的电压平台和高稳定性,这个混合体系的耐过充性能得到一定提升。另外,由于LFMP表面的弱酸性,高镍NMC混合少量LFMP还可以改善匀浆过程中的凝结现象,对改善三元材料涂布一致性有一定效果。