资讯

【盘点】那些年我们应用的储能技术

发布时间: 2015-07-27 09:14:46    来源: 知乎专栏
字体:

[摘要]储能技术是通过装置或物理介质将能量储存起来以便以后需要时利用的技术。储能技术按照储存介质进行分类,可以分为机械类储能、电气类储能、电化学类储能、热储能和化学类储能。

  四 热储能

  (1)基本原理

  在一个热储能系统中,热能被储存在隔热容器的媒质中,以后需要时可以被转化回电能,也可直接利用而不再转化回电能。

  热储能有许多不同的技术,可进一步分为显热储存(sensible heat storage)和潜热储存(latent heat storage)等。显热储存方式中,用于储热的媒质可以是液态的水,热水可直接使用,也可用于房间的取暖等,运行中热水的温度是有变化的。而潜热储存是通过相变材料( Phase Change Materials, PCMs)来完成的,该相变材料即为储存热能的媒质。

  (2)缺点

  n 热储能要各种高温化学热工质,应用场合比较受限。

  (3)应用

  由于热储能储存的热量可以很大,所以在可再生能源发电的利用上会有一定的作用。熔融盐常常作为一种相变材料,用于集热式太阳能热发电站中。此外,还有许多其他种类的储热技术正在开发中,它们有许多不同的作用。

  五 化学类储能

  化学类储能主要是指利用氢或合成天然气作为二次能源的载体。

  (1)基本原理

  利用待弃掉的风电制氢,通过电解水,将水分解为氢气和氧气,从而获得氢。以后可直接用氢作为能量的载体,再将氢与二氧化碳反应成为合成天然气(甲烷),以合成天然气作为另一种二次能量载体。

  (2)优点

  采用这两种物质作能量载体的好处是储存的能量很大,可达TWh级;

  储存的时间也很长,可达几个月;

  另外氢和合成天然气除了可用于发电外,还可有其他利用方式,如交通等。

  (3)缺点

  全周期效率较低,制氢效率只有70%左右,而制合成天然气的效率60-65%,从发电到用电的全周期效率更低,只有30%-40%

  (4)应用

  将氢与二氧化碳合成为甲烷的过程也被称作为P2G技术(power to gas)。 德国热衷于推动此项技术,已有示范项目在德国投入运行。以天然气为燃料的热电联产或冷、热、电联产系统已成为分布式发电和微电网的重要组成部分,在智能配电网中发挥着重要的作用,氢和合成天然气为分布式发电提供了充足的燃料。

  六 各种储能技术的性能比较和应用选择

  储能技术种类繁多,他们的特点各异。实际应用时,要根据各种储能技术的特点以及对优缺点进行综合比较来选择适当的技术。供选择的主要特征包括:①能量密度 (kWh or MWh);②功率密度 (kW or MW);③响应时间(-ms, -s, -minute);④储能效率 (充放电效率);⑤设备寿命 (年)或充放电次数;⑥技术成熟度;⑦经济因素 (投资成本、运行和维护费用);⑧安全和环境方面的考虑。

  在实际工程项目中,要根据储能技术的上述特征,应用的目的和需求,来选择其种类、安装地点、容量以及各种技术的配合,还要考虑用户的经济承受能力。

  6.1 放电时间对比

  储能技术性能如果按放电时间划分,可分为

  ①短放电时间(秒至分钟级),如超级电容器、超导储能、飞轮储能,

  ②中等放电时间(分钟至小时级),如飞轮储能、各种电池等,

  ③较长放电时间(小时至天级),如各类电池、抽水蓄能、压缩空气等,

  ④特长放电时间(天至月级),如氢和合成天然气。

  上述放电时间短的,常常是功率型的,一般可用作UPS和提高电能质量。中等放电时间的,可用于电源转接。较长或特长时间的,一般是能量型的,可用于系统的能量管理。目前应用最广泛的大型抽水蓄能可以解决天级的储能要求,要满足周和月级的储能需求要依靠其他种类储能手段,如氢和合成天然气。

  不同储能技术的储能容量能量和放电时间的比较示于图,可以看出不同的储能技术处于图中不同的位置。

  6.2 功率对比

  大规模、永久储能的应用可分为三类:

  ① 电能质量要求:在该应用中,储存能量仅用于在几秒钟或更少的时间,以确保传输电能的品质。

  ② 应急能量要求:在这些应用中,贮存的能量可用几秒到几分钟,从一个电源切换到另一个电源时,以保证电能的连续性。

  ③ 系统能量管理要求:在这些应用中,储能系统用于发电和消耗之间的去耦及同步。典型的应用是负载平衡,这意味着在非高峰时储存能量(能量成本低),并在高峰时段使用存储的能量(能量较高的成本)。

  6.3 效率对比

  储能的效率和寿命(循环的最大数)是两个重要参数,因为它们影响到存储的成本。下图给出不同存储技术相对于效率和寿命的特点。

  6.4 投资对比

  投资成本是一个重要的经济参数,影响能源生产的总成本。每个循环的成本可能是评估能量存储系统成本的最佳方式。下图给出投资的主要组分,考虑到耐用性和效率。

  6.5 密度对比

  存储系统的体积很重要,首先,它可能被安装在一个受限制的或昂贵的空间,例如在城市地区。其次,体积增加,则需要更多的材料和更大的施工现场,从而增加了系统的总成本。

更多推荐

专家专栏

企业专题

热门文章

展会沙龙

󰀗返回顶端